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ABSTRACT

Digital computer interrupts are becoming more important as these

machines increase in the interaction with their environment. Different

methods of interrupt implementation are described. They are then

analyzed in the areas of response time, overhead, and saturation.

Examples of the use of interrupts in different computational environ-

ments are given. Five modifications' to a general purpose computer

system are proposed. These modifications, each of which used interrupts,

enable the system to be. more easily used in a limited time-sharing mode.

The results of these, modifications are. compared to those of the software

that would be required to accomplish the same objectives.
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SECTION I

INTRODUCTION

Early digital computers were designed and used to solve individual

problems involving extensive calculations and produce the answers. When

the tremendous computational power of computers was applied to other

uses, however, the mere sequential execution of programmed steps in a

predetermined order was no longer sufficient. In such areas as on-line

automatic control, real-time simulation, and time-sharing systems, the

computer is required to be responsive to the demands of its environment.

This requirement is usually fulfilled by the use of interrupts.

Basically, an interrupt is a circuit designed to halt the normal

execution of a computer program on signal, and to execute in its place

a group of instructions to fulfill the needs of the device which initiated

the signal.

This paper will analyze the various methods of interrupt implementa-

tion and usage, and propose a small-scale time-sharing system which is

implemented on a general purpose digital computer through design changes

utilizing priority interrupts.
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SECTION II

ANALYSIS OF INTERRUPT SYSTEM REQUIREMENTS

Interrupts can be divided into three categories according to purpose.

The first of these, the request interrupt, is one which requires the

computer to take some immediate action to satisfy the cause of the inter-

rupt. Secondly, the indicator interrupt notifies the computer of some

external condition which does not require action, but the computer may

sample this condition to determine a course of action. The third type

is the fault interrupt, which is caused by some internal abnormal condi-

tion such as a parity error.

I. DESIGN CHARACTERISTICS

There are many methods for implementing interrupts in a digital

computer. The following paragraphs will describe the most prevalent

methods and classify them logically according to their characteristics.

Methods of Implementation

The basic requirement for an interrupt is to stop execution of the

current instruction sequence, make some record of the stopping point,

and execute instead some other special set of instructions, called the

interrupt subroutine. The first method to implement this is the single

interrupt system.

Single interrupt . The single interrupt system basically consists

of one flip-flop in the computer's control circuitry which is wired to

some external device. This flip-flop is set whenever the condition

causing the interrupt is present. The CPU will normally check the state

of this flip-flop after each instruction execution. If it is set, the

CPU will store the contents of the program address counter and execute the

next instruction (the first instruction in the interrupt subroutine) from
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some fixed location associated with this interrupt. Some provision would

then be made to clear the flip-flop and return to the point of interrup-

tion upon completion of the subroutine. The use of a system that does

not mark the point of interruption is not feasible for the following rea-

sons. Request and indicator interrupts normally require returning to the

program in progress when the interrupt was received. Fault interrupts

usually would not return, but the address of the instruction being execu-

ted when the fault occurred is important in determining the cause of the

fault

.

The single interrupt scheme described above has another limitation

in addition to being able to sense only one external condition. If,

while the interrupt is being processed, a second interrupt signal is

received, it will be lost, since it will attempt to set a flip-flop which

is already set. If the flip-flop is cleared at the start of the interrupt

subroutine rather than at the end to correct this, then another interrupt

signal would start the subroutine over again, destroying the original

interruption point. This would result in an infinite program loop.

Single interrupt with interlock . The deficiency noted above can be

eliminated by using a single interrupt with interlock, a device similar

to the single interrupt except that it has a second, or interlock, flip-

flop. An interrupt signal sets the first, or interrupt, flip-flop. At

the end of the next instruction, the CPU initiates the interrupt only if

the. interlock flip-flop is cleared. Immediately after starting the

interrupt subroutine, the CPU sets the interlock flip-flop and clears

the interrupt flip-flop. Another interrupt signal may then be received

and stored until completion of the present interrupt subroutine, when the

interlock flip-flop is cleared.
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Multiple interrupt with interlock . The next logical step in inter-

rupt system development is a system which will accept interrupt signals

from more than one source and be able to determine which source originated

the signal. Such a multiple interrupt system operates in a manner similar

to the single interrupt, except that the interrupt signal, in addition to

setting the interrupt flip-flop, also sets some indicator in the computer

which is unique to the signal source. Once the interrupt subroutine has

been entered, it interrogates the source indicators to determine which

external device initiated the signal.

When this multiple source concept is applied to the single interrupt,

new problems must be resolved. Since multiple interrupts are usually

independent, the probability exists that an interrupt from one source may

still be in process when an interrupt from another source is received.

The system should certainly prevent this second signal from being lost.

As a minimum requirement, therefore, an interlock should be used with a

multiple interrupt system.

The multiple interrupt with interlock can store a second interrupt

signal while processing the first one. This system must clear the source

indicator immediately after interrogating it. Otherwise, when the second

signal sets its indicator, an ambiguity would exist as to which source

initiated the second interrupt. When this idea is extended to allow for

more than one additional interrupt, the interrupt flip-flop then becomes

an indication that at least one interrupt signal was received while pro-

cessing the present interrupt. The CPU would interrogate and store all

source indicators for orderly processing. The system would then be re-

turned to the condition of being receptive to interrupts from all sources.

If this interrupt scheme were used, the system would have to be designed
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so that interrupts from one source occurring more often than they could be

serviced would either be impossible or of no significance.

Another implication of the interlock flip-flop is that while an

interrupt is being processed, the computer is uninterruptible. This is

always desirable for the single interrupt for reasons previously men-

tioned. It is possible, however, that in a multiple interrupt system,

an interrupt signal is received which is more important than the one being

processed. In such a situation it may be desirable to allow the more im-

portant Interrupt to gain control in deference to the less important one.

A system with this feature is one form of a priority interrupt system.

Priority interrupt . A priority interrupt system is basically defined

as an interrupt system which, when two or more interrupt signals are in-

volved, is able to distinguish among them according to priority and pro-

cess the one with higher priority. The first of two types of priority

interrupt systems to be discussed is the single level priority interrupt

system. This system has essentially the same features as the multiple

interrupt with interlock, with the added condition that when the CPU finds

the interrupt flip-flop set, it interrogates the source indicators one at

a cime, in order of priority, to determine the next interrupt to be pro-

cessed. It is single level because the CPU is uninterruptible while

executing an interrupt subroutine.

The second type is the multi-level priority interrupt system. This

system is similar to the one previously described, with the exception

that an interrupt subroutine may be interrupted by a higher priority

interrupt signal. This system has the advantage that if an interrupt

subroutine is being processed, it will always be the most important of

the ones awaiting processing.

In some situations where priority interrupts are used, a special
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interrupt is necessary for processing computer faults. This special de-

vice, known as a trap, is similar to an interrupt except that control is

not returned to the interrupted program, which eliminates the problem of

register and indicator storage. A trap usually does not require a position

in the priority hierarchy, since the normal purpose of a trap routine is

to make a post-mortem examination of the faulted program, a task of in-

herently low priority.

Selectivity . Another important characteristic of interrupt systems

is selectivity. Selectivity is the ability of the computer to ignore or

defer action on all or selected individual interrupts. Many ambiguous

terms related to selectivity are used in the computer field, The termi-

nology used here has been chosen as the most logically descriptive in

each case.

The first selectivity feature to be discussed is recognize/ignore.

The computer may, under program control, select either the recognize

state or the ignore state for an interrupt. If the ignore state is

selected, all incoming interrupt signals are essentially grounded. Recog-

nize/ignore may be further classified as general or selective. The gen-

eral recognize/ignore pertains to the entire interrupt system. The

selective recognize/ignore has the ability to ignore only part of the

system and recognize interrupts from the remainder. Selective recognize/

ignore is classed as either individual, for single interrupts, or group,

where more than one is involved. If this feature is designed so that a

general recognize following a general ignore will return the selective

ignores to their original state, then the selective recognize/ignore is

said to be exclusive. Conversely, an inclusive selective recognize/ignore

would be one in which previously executed individual or group ignores are

destroyed by a general ignore.
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That feature which permits the computer to postpone incoming inter-

rupt signals for later process is called allow/defer. When one or more

interrupts are deferred (placed in the defer state), interrupt signals

are stored in the source indicators. An interrupt signal is processed

normally when that interrupt is allowed (returned to the allow state).

The characteristics of selectivity for the recognize/ignore feature are

equally applicable to allow/defer.

Return of control . An important consideration in interrupt imple-

mentation is the method of retaining the status of the interrupted program

so that a smooth transition can be made back to it when the interrupt

subroutine is completed. The minimum requirement, as stated previously,

is to save, the program address counter. It is desirable, however, to

provide some hardware method of storing any internal computer indicators,

such as overflow. When the computer is to return to a program after an

interrupt subroutine, the previous contents of arithmetic and index

registers must be available. The practice of saving and restoring regis-

ters when writing normal subroutines is usually an adequate method for

interrupt subroutines. Of course, only the registers used need to be

saved and restored.

Interrupt ibil it

y

. Program interrupt ibility is another important

consideration in designing computers which use interrupts. The basic

question is one of determining at what points in the execution of in-

structions an interrupt will be allowed to occur. The simplest logical

solution to this question is to allow the recognition of interrupts be-

tween instructions. Any general scheme of allowing interrupts during the

execution of an instruction can become exceedingly complex. An instruc-

tion usually causes the control circuitry to take certain actions con-
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currently and to use results obtained early in an instruction to determine

some course of action later in that same instruction. For this reason

it would not be feasible to recommence in the middle of an instruction if

that is where the interrupt occurred. The case in which an instruction

uses registers for both computation and storing the answer upon completion

is more critical. For example, if a divide instruction were interrupted

when the divide operation were half completed, the contents of the accumu-

lator would be meaningless. This type of instruction could not be repeated

after interruption because at the beginning of the instruction the accumu-

lator contains information to be used during execution. It is possible

to restart such an instruction at the point of interruption, but all

registers and indicators would have to be restored. This would be a com-

plex and time-consuming operation for an arithmetic or shifting instruc-

tion; the effort is probably not worthwhile.

Some instructions take so long to execute, however, that to adopt

the policy that all instructions will be allowed to proceed to completion

before interruption is probably undesirable. Also, some computer opera-

tions are accomplished by a contiguous chain of instructions which would

be difficult to reconstitute if interrupted.
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II. OPERATING CHARACTERISTICS

The previous material represents an attempt to logically explore

and categorize the possible methods of implementation and attributes of

interrupt systems. New definitions have been provided where confusion

heretofore existed. The following paragraphs discuss three important

factors concerning interrupts; response time, overhead, and saturation.

A careful analysis of these factors from the standpoint of system re-

quirements should preclude the choice of the appropriate interrupt system

in every case.

Response Time

Response time is a term which is broadly defined as the time between

receipt by the computer of an interrupt signal and some specific action

taken by the computer in response to that action. Three other terms have

been chosen which define more precisely the concept of response time.

These are reaction time, recognition time, and decision time.

Reaction time is defined to be the length of time between interrupt

signal receipt and the start of execution of the first instruction re-

lated to the interrupt. Reaction time, then, is a measure of how fast

the computer shifts from its current program to process the interrupt

once it is received. Recognition time is defined as the length of the

time between the execution of the first instruction related to the inter-

rupt and the determination by the computer of the source (and purpose)

of the interrupt. Decision time is defined as the length of time between

determination of interrupt source and completion of the action required

by the interrupt.

React ion time . Required reaction time is a primary consideration

in determining the degree of interrupt ibility and the method of implemen-
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tation. If reaction time of an interrupt is considered in the absence of

all other possible interrupts, then it is determined only by interrupti-

bility. Once the possibility of other interrupts is introduced into the

problem, the mean response time will increase in proportion to the fre-

quency of interrupts and to the length of their interrupt subroutines.

An interrupt in a single level priority system will have a decidedly

faster reaction time in a dense interrupt environment if the priority is

significantly above average. The reaction time in a multi-level priority

system depends very heavily on priority. The reaction time of the highest

priority interrupt is a function of interrupt ibility only. For those of

lower priority, the reaction time will increase only in proportion to

the frequency of occurrence and subroutine length of those interrupts of

higher priority.

In systems where interrupts may occur only between instructions,

mean reaction time due to interrupt ibility is approximately equal to one

half of the instruction execution time. An increase or decrease in fre-

quency of points of interruption will change reaction time accordingly.

Reaction time includes the time that an interrupt is in the defer

state, since the computer can react to the interrupt only in the allow

state. If an interrupt is in the ignore state, reaction time is unde-

fined, since there is no reaction to ignored interrupts.

Recognition time . Recognition time is significant only in systems

which determine the source of interrupt signals by software. As an ex-

ample, a multiple interrupt with interlock system might be designed so

that the source indicators are interrogated sequentially by a series of

instructions until the correct source is found. The recognition time

would be the time required to execute these instructions. If the example

system were single level priority, then the recognition time would vary
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inversely with priority. Determination of interrupt source by hardware is

a feasible method of reducing response time since this method eliminates

recognition time.

Decision time . Decision time is finite for all interrupts, but its

length depends entirely on what action is required to process the inter-

rupt. Decision time can be reduced in some cases by processing the

critical portion of an interrupt at the time of occurrence, and deferring

any less important parts for processing at a later time. These less im-

portant parts may be deferred for processing by a control program, or by

a lower priority, self-initiated interrupt (where such capability is

available). Decision time should be held to a minimum since it affects

reaction time of lower priority interrupts.

Overhead

Overhead is defined as the difference between the time required to

execute all instructions concerned with an interrupt and the time re-

quired to execute those which actually process the interrupt request.

Examples of overhead are the instructions used to determine the source

of an interrupt, and those which are used to establish recognize/ignore

and allow/defer conditions. Overhead is obviously closely related to

response time. However, under certain*condit ions when many interrupts

are used, overhead could be high enough to markedly degrade computer per-

formance while response time remained at a satisfactory level. Steps

taken to reduce response time by accomplishing interrupt housekeeping

with hardware rather than software will also reduce overhead.

Instructions used to set up selectivity conditions increase overhead

without affecting response, time, since these are normally executed by a

control program rather than by an interrupt subroutine. The use of an
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exclusive selectivity system will materially reduce overhead, but at the

expense of more complex hardware.

The time required to save and restore registers and indicators is

also overhead time. This can be reduced by storing only those registers

which are used by the interrupt subroutine. Some third generation com-

puters use multiple register-blocks for rapid context switching. Where

this capability exists interrupts can switch to a different register

block and thereby eliminate the normal save-and-restore overhead.

Saturation

Saturation is defined as the condition where information which nor-

mally enters the computer by or as the result of interrupts is lost be-

cause of excessive response time. A simple example is the case in which

the time between successive interrupt signals from one source is greater

than the required response time for that signal. As was stated previously,

however, this condition should not normally exist, since interrupt signals

from one source usually follow some cyclic pattern rather than being ran-

dom. When saturation results from multiple interrupt sources, the general

remedy is to use all possible methods to reduce response time and over-

head. In some cases saturation can be eliminated by a change in priority.

For example, df real-time clock pulses which are low in priority are de-

layed so much that some are lost, the priority probably could be raised

enough to prevent saturation. Since the amount of processing required

for clock pulses is usually small, this would have no appreciable effect

on the response time of other interrupts.

The above example also illustrates an important concept, namely,

that the priority assigned to an interrupt does not depend solely on

its relative importance. Assigned priority should be a function of

relative importance, frequency of occurrence, processing time, and type

of interrupt.
26



SECTION III

USE OF INTERRUPTS IN COMPUTER SYSTEMS

Interrupt usage increases in proportion to the interaction between

the computer and the outside world. This section will give examples of

interrupt system utilization in increasing degrees of interaction.

Input/Output Interrupts

All computer systems must interact with their environment to some

degree. The minimum interaction occurs in the so-called "batch pro-

cessing" system, in which the computer reads in the program and data

through some peripheral device, solves the problem, and transmits the

answers to another peripheral device. Interrupts were first used to

increase the efficiency of these input/output, or I/O, operations. Most

peripheral devices operate at transmission rates much below that of the

computer. An interrupt system allows the computer to execute instruc-

tions at its normal rate during and I/O operation. For example, a typi-

cal second-generation computer reads paper tape at 400 frames per

second. This represents an input rate of 100 24-bit words per second,

or one word each 10 msec. The computer, on the other hand, can accept

and store input data at a rate of approximately 200,000 words per second,

or one word every five usee. When the CPU is dedicated solely to reading

paper tape, it operates at 0.05% of its maximum rate. The common inter-

rupt scheme described below can eliminate this problem.

The paper tape reader initiates an interrupt signal to the computer

each time that a word is ready to be read. The CPU could execute some

program during the input operation which is not related to the informa-

tion on paper tape. Receipt of the interrupt signal initiates an inter-

rapt subroutine to store the word in memory, update the operand address
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in preparation for the next word, test for end conditions, and return to

the interrupted program. This operation would take approximately 20

usee, allowing the CPU to execute the unrelated program at 99 . 8% of its

maximum rate.

The interrupt subroutine execution time can be reduced further by

having a second interrupt signal initiated by the reader when an end-of-

message signal is read from paper tape. If a priority interrupt system

is used, this interrupt will have priority over the word-ready interrupt,

otherwise the end -of -message signal would be read as data. In a multi-

level priority system this second interrupt saves one instruction for

each word read, since end conditions need not be checked. This instruc-

tion would also be eliminated in a single level system, but another

instruction must be added to the interrupt subroutine to determine the

source of the incoming interrupt signal.

Interrupts are used for all I/O devices to increase efficiency.

When these devices communicate with the computer over separate communi-

cations channels, separate interrupts must be used for each channel.

This causes a significant increase in subroutine execution time for the

single-level priority system, since the recognition time increases in

proportion to the number of system interrupts. However, such considera-

tions are significant only from the standpoint of CPU efficiency since

response time is always adequate and saturation non-existent for I/O

interrupts

.

On-line Real-time Interrupts

Interaction with the environment is increased significantly in

on-line real-time systems. Such systems are used in automatic process

control, hybrid computation and simulation, and other more specialized

areas. An on-line real-time computer is defined as one which processes

28



data in synchronism with some real-time physical process such that the

computation results are useful to the process. [l] These systems nor-

mally transmit data to and from the associated process through A/D and

D/A converters.

A typical application of this system is in hybrid simulation, where-

in the digital computer is interfaced with an analog computer. The

digital computer is used for calculations that require a high degree of

precision and for other operations more suited to this method of compu-

tation. Analog and digital computers are inherently incompatible, since

the computing time in an analog computer is proportional to physical

time, whereas computing time in a digital computer depends entirely on

the speed of the computer and the size of the problem. The normal method

of synchronizing them is to key the digital operation to periodic timing

signals furnished by the analog computer, or by some external timer which

furnishes these signals to both computers. The digital computer for the

system must have a minimum capability of completing all required calcu-

lations initiated by a timing signal before the next signal is received. [2]

Interrupts are universally used to provide synchronization of the

digital computer in a hybrid system. In the simplest system, the timing

signal interrupts the computer to start a calculation cycle. When com-

pleted, the computer goes into an idle loop to await the next interrupt.

Normally the digital computer will be required to perform several tasks

of various lengths and frequency of occurrence. There are two methods

of approaching this problem. The first places control in a digital com-

puter executive program. The computer is interrupted periodically by

timing signals. The interrupt subroutine records each timdhgj p\ilse in

a counter and returns control to the executive. The executive program
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then initiates all tasks to be performed at the appropriate time. The

second method is an expansion of the one-task system, where each task is

initiated by a separate interrupt. Use of this second method is manda-

tory for a system in which the starting time of each digital computation

is not predictable, but is determined by conditions external to the digi-

tal computer.

Time-sharing Interrupts

The recently evolved time-sharing computers have the most stringent

time requirements of all computer systems. In the inter-active time-

sharing systems, where many users are on-line simultaneously, each user

operates some type of console as though he had complete control of the

computer. The timing of computer operations in this system must be quite

efficient to give each user a satisfactory response time. Interrupts

form an important part of this system since many tasks are executed

asynchronously. Because of the precise timing requirements mentioned

above, the interrupt system must be as efficient as possible.

Interactive users in a time-sharing computer system should have as

much flexibility as possible in software and hardware features. The

only hardware limitations that should be imposed upon them are basic

system capability and the necessity for prevention of interference be-

tween users. If two or more jobs are being performed simultaneously,

then any one of them must be prevented from stopping the computer, or

placing it in a position so that it is uninterruptible. In addition to

these mandatory requirements, other hardware features can be implemented

to greatly enhance the efficiency of time-shared operation, and thereby

reduce response time.

Each user is normally allotted a certain amount of time known as the
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time slice, for his exclusive use of the CPU. Since his program will

probably be transferred from core memory to secondary storage and back

again between successive time slices, the time slice should be long

enough to allow the ratio of computation time to transfer time to be

reasonable. If it is too long however, the user response time will be

excessive. Where interrupts are used, they shoiild have minimum overhead

to maximize CPU efficiency.

Request interrupts are used in time-sharing systems to signal the

end of the time-slice, to increase efficiency of I/O operations, to per-

mit the user to communicate with his programs, and to allow the user

program to request some common service from the control program. If a

user attempts to interfere with another user's program or execute an

illegal instruction, this can be efficiently signaled by a fault inter-

rupt. Time-sharing is one of the special situations where traps can be

used to great advantage for this purpose. The exclusive selectivity

scheme can be used to allow the system to accept interrupts from each

user's console only during that user's time slice.

A time-sharing system is said to be multiusage if different classes

of tasks are performed simultaneously. If one or more of these tasks

is classified as real-time, then the system presents the greatest chal-

lenge to the systems designer. Every resource at his disposal must be

analyzed and implemented with maximum efficiency, not the least important

of which is the chosen interrupt system. [3]
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SECTION IV

PROPOSED DIGITAL CONTROL LABORATORY TIME -SHARING SYSTEM

The new computer system for the Digital Control Laboratory (DCL) at

the Naval Postgraduate School will consist of a standard Scientific Data

Systems 9 30 computer with the optional equipment listed in Table 1, [V|

I. SDS 9 30 COMPUTER FEATURES

The SDS 930 is a fast, small, flexible, second generation computer,

but one which was developed late in the second generation, and there-

fore contains features which are more advanced than those of earlier

machines

,

Time-mult iplexed Communication Channel

The first of these features is the time-multiplexed communications

channel (TMCC), which can, with interlace, handle I/O at speeds of up

to 285,714 words per second depending upon the capability of the part-

icular peripheral device with which the computer is exchanging informa-

tion. The TMCC may communicate with up to 30 peripheral devices at the

same time, but the transmission rate is reduced considerably by using

more than one device at a time. The computer may contain up to four

TMCC ' s , each with or without interlace. The interlace feature provides

the CPU with the ability to transfer information by simply setting a

pointer and counter, then initiating the transfer. The information ex-

change starts at the location specified by the pointer and transfers the

number of words specified by the counter, all without further interven-

tion by the CPU. Furthermore, the CPU is normally notified by the TMCC

when the transfer has been completed by an I/O interrupt. It should be

pointed out, however, that for each word transferred, the CPU is not
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Quantity Dascript ion

1 Time -Multiplexed Communication Channel

2 8,192 Words (24 bits) of Core Memory

1 Memory Interlace Control Unit

1 Real-Time Clock

1 Interrupt Control System

6 Priority Interrupt, two levels

2 Multiple Access to Memory

1 Twelve-Bit Option

1 Paper Tape Reader/Punch

1 Keyboard/Printer (Teletype)

1 Card Reader (200 card/minute)

1 Unbuffered Line Printer (140-160 lines/min.

)

2 Magnetic Tape Transport (75 ips , 200 cpi)

1 Magnetic Tape Controller

1 Rapid Access Data Storage Unit

2 High Performance Display Console

1 Memory Interface Controller

2 CRT Channel

2 Analog Data Channel

1 Analog to Digital Converter

1 Digital to Analog Converter

1 Analog Computer

Table 1. Digital Control Laboratory Optional Equipment
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allowed to process instructions for the duration of the transfer, which is

3.5 usee. The advantage is gained by the fact that single word transmis-

sion of the first data word requires a minimum of 19.25 usee, and each

word thereafter, in sequence in memory to the same device, requires a

minimum, of 8.75 usee.

Programmed Operator

The next major feature is the programmed operator, or POP. If bit

position two of an instruction contains a one, the operation code (bits

three through eight) is not interpreted normally, but the program jumps

to the address in memory specified by bits two through eight. This

allows the programmer to design up to 64 macroinstruct ions and to gain

direct access to them through branch instructions located in cells 0100

through 0177. Control will automatically be returned to the main pro-

gram, upon completion of each macroinstruct ion.

Multi-level Priority Interrupt System

One. of the most important advanced SDS 9 30 features is the multi-

level priority interrupt system. The computer is capable of handling

up to 922 separate priority interrupt levels, two of which are standard

equipment. The interrupts are divided into two basic classes: interval

and external.

Internal interrupt . The. internal interrupt is concerned with con-

ditions within the computer and its standard peripherals which cause the

program in progress to cease in deference to the appropriate interrupt

subroutine. There are 26 possible, internal interrupts. The two which

are standard equipment are. associated with the standard TMCC. There are

two more optional interrupts for each of the other seven optional communi-

cations channels. The other four internal interrupts are used for the
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power fail-safe option and the real-time clock. The power OFF interrupt

causes the program in progress to stop, and the contents of all important

registers to be stored in a specific location in memory whenever the

voltage drops below a certain level. The power ON interrupt causes these

register contents to be restored to the appropriate registers when the

voltage ajgain rises above this same level. The real-time clock can be

used to cause interrupts at the expiration of time periods of specific

length, or at specific times of the day.

External interrupt . The computer has a maximum capacity of 896

optional external interrupts. All external interrupts are lower in prior-

ity than any internal interrupt, but otherwise they operate in the same

manner.

Normal interrupt . Each separate interrupt has associated with it a

specific cell in core memory. When an interrupt occurs, the computer

halts computation at the end of the present instruction and automatically

executes the instruction in the memory cell associated with the appropri-

ate interrupt. The instruction used in an interrupt location is deter-

mined by whether that level is a normal or single- instruction interrupt.

A hardware change is required to convert a normal interrupt level to

single-instruction operation. When a normal interrupt is used, the memory

cell associated with it must contain a Mark Place and Branch instruction,

BRM. This instruction, which is similar to the return jump instruction,

causes transfer of control to the interrupt subroutine. The BRM "marks

place" by storing the contents of the program counter (which contains

the address of the next instruction in the main program) in the operand

of the BRM, then executing the instruction contained in the following

address. At the end of the subroutine, an Unconditional Branch instruction
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or BRU, is executed using indirect addressing. The operand address of

this BRU is the first word in the interrupt subroutine, which in turn

contains the address of the. next instruction in sequence in the main pro-

gram. In addition, it also automatically clears the interrupt.

Single- instruct ion interrupt . The single-instruction interrupt level

allows execution of only the instruction in the interrupt location, Upon

completion of this instruction, control is returned to the program pre-

viously being executed by calling the next instruction indicated by the.

program counter. The program counter is not altered by the housekeeping

associated with the execution of the single interrupt instruction, nor

by the execution of any instruction in this mode. As an example, the

execution of a Reduce Memory, Skip if Negative instruction, SKR, in the

CLOCK PULSE interrupt location, cell 075, causes the following special

sequence. The operand is decremented by one, the interrupt is cleared,

and control is returned to the main program. The SKR normally skips one

instruction if the operand is negative after having been decremented, but

in this special situation, if a negative count occurs, the skip is in-

hibited and a CLOCK SYNC interrupt is initiated. This interrupt causes

execution of the instruction in cell 074. This is the method used to

interrupt a program after a given elapsed time. An integer equal to the

number of 16.67 msec intervals desired minus one is entered in the oper-

and of the SKR instruction. When this cell becomes negative, a normal

interrupt occurs which signals the end of the time period.

Selectivity . The interrupt system is equipped with the general

allow/defer selectivity feature, which for this computer is called enable/

disable. The general allow/defer is under program control, but the pro-

grammed defer may be overridden by a manual allow switch available to
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the operator.

The individual recognize/ignore, here called arm/disarm, is avail-

able as an option, but is not included in the DCL system. However, the

two real-time clock interrupts are equipped with a group recognize/

ignore under program control. [5]

II. SDS 9 30 COMPUTER OPERATION

The following paragraphs will describe generally how the CPU func-

tions, the logic of the interrupt system, and what effect the interrupt

system has on CPU operation when an interrupt occurs.

Central Processing Unit Operation

Each machine instruction is executed during an integral number of

1.75 usee machine cycles. Each cycle contains eleven timing pulses,

designated T8,T7 , . . . . ,T0 ,Tr ,Tp. These pulses are generated by a six

flip-flop pulse counter (Q1-Q6) which is fed by a 6.28 mHz crystal oscil-

lator. During execution of any given instruction, each machine cycle is

assigned one of eight possible phases, 00 ,01 , . . . . ,07 . The phases are

determined by a three stage counter (Fl-rF3) which is advanced to the next

appropriate phase, usually by the Tp timing pulse, depending upon which

instruction is being executed. Each action taken by the computer is

triggered by the presence of a specific timing pulse during a specific

phase of an instruction.

The 930 word is 24 bits long. The instruction format is as indi-

cated in Figure 1. The CPU contains the following 24 bit registers: an

exchange register, C, an accumulator, A, an accumulator extension regis-

ter, B, and an index register, X. The program address counter, P, and

storage address register, S, are 15 bits in length; the operation code

register, 0, contains 6 bits. These registers generally operate like
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9

10

23

M

1 : operand is to be modified upon relocation

1 : indexing is to be used

1 : this instruction is a programmed operator

J> six bit operation code

= 1 indirect addressing to be used

> 14 bit operand address

Figure 1. Instruction Format

those of any normal second generation computer, except that data is

transmitted between the 24 bit registers in a serial-octal mode, or three

bits at a time. The sending and receiving registers both shift three bit

positions during each transmission, and the process continues until each

register has been shifted 24 bits. The use of clocked flip-flops allows

information to be exchanged between two registers without intermediate

storage since old information may be transferred out of a flip-flop at

the same time that new information is is inserted without mutual inter-

ference .

Certain operand addresses are transmitted from one register to

another, in serial -octal mode, through a three stage full adder. As an

example, when a branch instruction is executed, the operand address in

C is sent to P, three bits at a time, through the full adder. The three
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least significant bits of C (C21-C23) form the augend inputs to the adder,

the addend inputs are disabled, and the output sum (Addl - Add3) goes to

the three most significant bits of P (P0-P2). If indexing is used in a

branch instruction, the addend input from X is enabled, thereby allowing

the contents of the index register to be added to the address as it is

being transferred- This allows indexing to be performed with no increase

in instruction time.

The path for all words to and from memory uses parallel transmission

between C and the memory data register, M. Other data transfers which

use parallel transmission are: the opcode from C to 0, and operand ad-

dresses from C or P to S for storage reference.

The last phase in any instruction is designed as the End phase in

addition to be assigned a number. When an instruction other than a

branch or skip is executed, housekeeping to prepare for the next instruc-

tion, NI, is performed during End. This housekeeping normally consists

of the following operations: (1) P is incremented by one to reference

the next instruction in sequence, (2) P is transmitted to S to provide

storage reference, (3) the contents of the address in S is loaded from

memory into M, (4) the instruction in M is transmitted to C, and (5) the

phase counter is reset to 00. The next phase will then be the first

phase, or 00, of NI. The first timing pulse of this phase, or T8 00,

transfers the opcode from C to 0. The instruction being executed then

determines the action to be taken by the CPU. [6]

Interrupt Control System Operation

Normal interrupt. The logic for level 34 of the interrupt control

system, ICS, is shown in Figure 2. An interrupt request for this level

must consist of a one (+4 volts) at U34) . This request should be held
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N5-N14

Is34 <r

Figure 2. Interrupt Control System Logic, Level 34
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in the one state for at least 1.73 usee, then cleared as soon as possible.

When U34) is true, Is34, the level 34 interrupt storage flip-flop, will

be set by the trailing edge of the next TO timing pulse. Is 34 indicates,

when set, that an interrupt has been received on level 34 that has not

been processed. If no higher level interrupt is waiting or being pro-

cessed, the interrupt signal, Ir, and the storage address unique to level

34, 0235, are sent to the CPU. If the interrupt system has been enabled,

the present instruction is not an EOM, and an interlaced I/O operation is

not taking place; then Ir sets Int , the interrupt flip-flop in the CPU.

The necessary conditions to set Int (designated slnt) are shown in the

following logic equation:

slnt = (05 01 05 Ts Ql) T4 End [~Is + Ir (En + (En) )1 Ts". (1)

Once Int is set, the normal signal which causes P to be transmitted to

S, Sxp, at End T3 is inhibited:

Sxp = T3 Int" (End + ju Eax) Go + T3 (Kmc) . (2)

Instead, a signal, Sxn, is generated to transmit the interrupt address,

N5-N14, to S:

Sxn = T3 Int Inr. (3)

In the example of an interrupt to level 34, Sxn causes the address 02 35

to be transmitted from the N cable receivers to S. Inr, the interrupt

interlock flip-flop, is always set six timing pulses after Int is set:

slnr = Tp Int. (4)

Inr prevents Sxn and other interrupt initiate signals from being genera-

ted during subsequent phases.
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The next timing pulse after slnt causes an interrupt recognition sig

nal, Ie, to be sent to the ICSs

Ie = Int Inr Ti, (5)

where Ti is true from T3 through TO:

Ti = Q6 Ql. (6)

Ie sets Ip34, the level 34 interrupt process flip-flop, if no higher

level interrupt is in the waiting or active states. Ip34 indicates that

the CPU is now processing the interrupt subroutine initiated by this

level, and disables Ir and N5-N14.

The. CPU now proceeds to execute the BRM which must be located in

02 35, This instruction transfers control to the appropriate subroutine

as previously described. During 00 of the BRM, Int and Inr are reset

(designated rlnt ) so that normal CPU operation may take place while exe-

cuting the interrupt subroutines;

rlnt = rlnr = T7 Sk Go + (St)

.

(7)

Otherwise Int would inhibit the transfer of the address of NT from P

to S.

The indirectly addressed BRU at the end of the subroutine, in addi-

tion to returning control to the main program, also sends an interrupt

termination signal, lb, to the ICS:

lb = 00 la 0T (02' 04 05 06) Ts Ti + I j Ts° End Inr Ti. (8)

lb resets the process and storage flip-flops, provided that no higher

level interrupt is in progress. This indicates that the interrupt has

been returned to the. inactive state. If u34) is still true during the
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phase after lb is received by the ICS, the interrupt will be repeated. The

optimum pulse length for an interrupt signal is therefore 1.75 usee.

Single-instruction interrupt . A normal interrupt may be converted

to a single- instruction interrupt by inserting a connection as indicated

by the dotted line in Figure 2 to furnish the single-instruction inter-

rupt signal, Ij. Any instruction requiring two or more machine cycles

may be used in the memory cell assigned to a single-instruction inter-

rupt, but the normal use of this type of interrupt uses an SKR instruction

to decrement a counter.

When a normal skip instruction is executed, P is increased by one

by the P + 1 adder during the next to last phase }.ri order to address the

next instruction. In any phase where a P + 1 is possible, P is right

circular shifted five times, three bits at a time. P is increased by one

if the indirect address flip-flop, la, is set when this shift takes place.

During this same phase the condition which could cause the skip is checked.

If satisfied, la is set during the last phase by the skip flip-flop, Sk

,

to cause P to be increased by one again, thereby causing NI to come from

cell P + 2 rather than P + 1. For an SKR instruction, Sk is set during

phase four if M is negative:

sSK = ... + 04 01 05 06 Tr CO + ... , (9)

where. CO is the sign bit of C which is enabled when C contains a nega-

tive number. Sk in turn sets la during End (07):

sla = ... + T8 07 Sk (Kr) (Ij + Inr)

+T8 (04 + 06) (Kr) (Ij + Inr) + ... (10)

and the skip is effected.
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When SKR is executed as a single-instruction interrupt, its operation

is altered. During 04 and 07, the presence of Ij causes (Ij + Inr) in

Eq. 10 to be false, since Inr is true only during 00, and P is not modi-

fied during the SKR execution. Control is therefore returned to the next

instruction in sequence in the main program upon completion of the inter-

rupt. The single-instruction interrupt termination is caused by the

presence of Ij in the second term of Eq. 8, and occurs regardless of the

instruction executed.

Real-time clock interrupts. The real-time clock uses two special

interrupts: one. normal and one single-instruction. The A-C line voltage

is stepped down to 10 volts peak-to-peak and clipped to provide a square

wave as a timing signal, Rtc, to the real-time clock control circuit.

This control circuit consists of three flip-flops, Rtl, Rt2, and Rt3. Rtl

is set under program control when the real-time clock is armed. Rt2 is

set at the first Ti during the positive half of Rtc:

sRt2 = Rt2 Rtc Ti. (11)

When Rtc goes to zero one half cycle later, Rt3 is set:

sRt3 = Rtl Rt2 Rt~3 Rtc Ti, (12)

but remains set for only one phase:

rRt3 = Rt3 Ti + St. (13)

Rt3 thus serves as a 1.75 usee interrupt request, CLOCK PULSE, which

occurs every 16,67 msec (1/60 sec); it sets Is8 at Ti time to trigger

the single-instruction interrupt located in cell 075. If this instruc-

tion is an SKR, it operates as previously described, except that the
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following signal is generated if the effective memory location is reduced

to a negative value:

Ski = Sk 07 Ij Inr. (14)

Ski is the CLOCK SYNC interrupt request to Is7 which signals that the

elapsed time interval set in the effective memory location is completed.

This normal interrupt, located in cell 074, causes the desired action to

be taken at the end of the interval.

Both real-time clock interrupts are always enabled, since the inter-

rupt signal they send to the CPU is Is rather than Ir. As shown by the

bracketed term of Eq. 1, only Ir requires that the ICS be enabled by the

program controlled enable flip-flop, En, or the console enable switch,

III. DIGITAL CONTROL LABORATORY SYSTEM OBJECTIVES

The basic objective of the DCL installation is to simultaneously

perform in the priority order indicated (1) hybrid computation in con-

junction with a Comcor analog computer, (2) interactive program compo-

sition, checkout and execution at two display consoles, and (3) background

batch processing of jobs with one of two possible priorities. In consid-

eration of these tasks and the equipment available in the system, several

hardware modifications involving interrupts are proposed for future im-

plementation into the DCL system. These modifications are (1) a mode

of operation for interactive users and batch processing in which restric-

tions are placed on the instruction repetoire and access to certain pro-

tected portions of memory, (2) the mechanism for detecting illegal

instructions and (3) memory protect violations • while in this mode, (4) a

second real-time clock which signals completion of a user's time quantum,
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and (5) the circuitry to allow sequences of normally non- interrupt ible

instructions to be interrupted.

Purpose of Modificat ions

The following paragraphs will analyze the proposed overall system

philosophy and the reasons for each modification.

The hybrid computation has highest priority because it is a real-

time process, In a real-time system, since the computer must be able to

respond to external stimuli fast enough so that information is not lost

and/or that answers are provided to the external equipment in time to be

of value, all display console and batch computation should be performed

during hybrid computation idle time. When the CPU is not involved in

hybrid computation, the execution control system should transfer control

to one of the two console users on a round robin basis. If any idle CPU

time remains, it should be scheduled for use by the background batch pro-

cess.

Multiple operating modes . The assumption is made that all program-

ming for the executive control system and hybrid program will be suffi-

ciently error-free so that, computer hangups and mutual interference will

not occur. It is also assumed that these two programs will reside in a

protected area in memory at all times; the control system must remain

there to retain control, and the hybrid program must remain there to pro-

vide adequate response time. These two programs will therefore operate

in the executive, or normal, mode as distinguished from the user mode.

When the computer is in the executive mode, its operation will be

identical in all respects with the standard SDS 930. This is necessary

so that all standard software will be useable without modification. The

executive control system will shift to user mode under program, control
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at the start of the user time quantum. Control will shift back to execu-

tive mode automatically when (1) the time quantum is completed, (2) an

interrupt occurs, (3) a privileged instruction is executed, or (4) a pro-

tected memory cell is referenced.

Privileged instructions . Since timing is so critical in a time-

sharing system, each user must be restricted in his use of instructions.

This implies, in effect, that a user may use his time to perform useful

computation, but he must be prevented from "wasting" time. Therefore,

all I/O operations must be performed by the executive control program,

which can be programmed to do I/O very efficiently. The user must be

prevented from inadvertently executing I/O instructions, as well as halt

and illegal instructions. The execution of any of these would waste

time. The privileged instruction modification is proposed to prevent

the user from executing these instructions.

Memory protection . The user must also be prevented from destroying

the executive control program or the hybrid program. The only positive

means of accomplishing this is to add a feature that will stop the user

before he executes an instruction which references illegal memory and to

notify the executive control program when this happens. The executive

can in turn notify the user of his error so that it may be corrected. In

the meantime, continuity of computer operation is maintained.

Quantum timer . Since the system real-time clock will be an integral

part of the hybrid system and will probably be used to provide absolute

time for most problems, a second clock, programmed as an interval timer,

is necessary to interrupt a console user at the end of his time quantum

so that control may be shifted to the other user console.

Non- interruptible sequences . The computer system can be effectively

disabled by the execution of a long or infinite chain of indirect addressing
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or Execute instructions. Neither chain is interruptible, so a user may

gain complete control of the system in this manner. To prevent this,

the non-interruptible sequence modification permits such chains to be

aborted and interrupted when the computer is in user mode.

Some of these modifications are similar to features of the SDS 940

computer system. This system, designed at the University of California,

Berkeley, is a time-sharing version of the SDS 930 which can accommodate

32 interactive users. The features which are important from the stand-

point of time- shared operation are a memory map used in conjunction with

a 64K word magnetic core memory, a large rapid access data storage unit

for secondary storage of user programs, a specially designed asynchronous

communications controller, three modes of operation, system programmed

operators, privileged instructions and an instruction interruptibility

feature. [8]

The proposed modifications can be implemented using SDS T Series

logic modules. These modules are available in flexible configurations of

both positive and negative logic and are fully compatible with SDS 930

circuitry. [9]

IV. PROPOSED LOGIC DESIGN CHANGES

The remainder of this section describes the proposed modifications

as changes to the SDS 930 logic equations. New logic terms in existing

equations, and new equations are indicated by underlining.

Multiple Operating Modes

Method . The mode of operation is determined by the state of the

mode flip-flop, Mo:

Mo = Executive mode

Mo = User mode.
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All of the changes and additions to the SDS 930 logic will be enabled by

Mo.

The transition from executive to user mode will be effected by the

execution of the following EOM instruction:

02 20040.

When this instruction is executed, Mo will be set:

sMo = Eom C10 Cll C18 TO , (15)

where

Eom = (05 01 05 Ts (Q2 Q5) 04) + ..., (16)

which is the enable for an EOM instruction. A branch instruction to a

location in the users program area must immediately follow the EOM; other-

wise a memory protect violation will occur. Retrieval of the branch

instruction itself from memory will not cause a violation forreasons to

be explained later.

Logic . The logic required for this modification is one flip-flop

and four NAND gates.

Privileged Instructions

Method. When the computer is operating in the user mode, instruc-

tions which halt the computer or reference external equipment, and in-

structions with illegal SDS 9 30 opcodes are called privileged instructions,

Execution of a privileged instruction causes a trap to occur. A trap as

defined here can interrupt another interrupt of any priority, and its

execution does not in any way inhibit other interrupts or traps from being

recognized and executed immediately when received. Privileged instruc-

tions are listed and identified in Table 2.

When a privileged instruction trap occurs, the privileged instruc-

tion is converted to a NOP, and the instruction in memory cell 040 is
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Opcode

00

02

03

04

05

06

07

10

11

12

13

15

21

22

Definition Opcode

Halt 24

Energize Output Multiplex 25

Illegal 26

Illegal 27

Illegal 30

Energize Output Direct 31

Illegal 32

Memory into Y Channel 33

Illegal 34

Memory into W Channel 40

Parallel Output 42

Illegal 44

Illegal 45

Illegal 47

Definition

Illegal

Illegal

Illegal

Illegal

Channel Y into Memory

Illegal

Channel W into Memory

Parallel Input

Illegal

Skip is Signal Not Set

Illegal

Illegal

Illegal

Illegal

Table 2, Privileged Instructions
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executed. This trap instruction should normally be a BRM, which will

store the address of the privileged instruction and branch to a subroutine

which will inform the user of the violation.

Execution of a privileged instruction generates a privileged instruc-

tion decode, Pid:

Pid = C3 C5~ C6

+ C3 C5

+ C4 C5

C6

C6 C8

+ C3 C4 C5 C7

+ C4 C5~ c7 C8

+ C4 C5 C6 C8

+ C3 C4 C5 57 C8

+ C3 C4 C5~ c7 C8

+ C~3 C4 C5 C7 C8

+ C3 C4 C5" C7 C8~, (17)

Pid is enabled from C rather than so that it v/ill be present at T8 00,

which is the timing pulse that causes transmission of the opcode from

C to 0. If the computer is operating in user mode and indirect addressing

is not being used, Piq is generated:

Piq = Pid Mo Go C2 00 T8 la . (18)

Piq sets the privileged instruction flip-flop, Pi:

sPi = Piq , (19)

and prevents initiation of the normal instruction execution. The trans-

fer of the opcode from C to is inhibited by Piq:

Oxc = 00 T8 la Go C2 Piq Ob Ai . (20)
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Oxc is always preceeded by a clear signal, Oc , during the last timing

pulse of the End cycle:

Oc = Tp End Sk + • • • . (21)

Oc clears all stages of except 02, which it sets:

s02 = Oc, (22)

Clear therefore actually sets to 020, which is the opcode for a NOP

instruction. Under normal conditions if an opcode whose second bit

position contains a zero is sent to 0, a zeros transmission occurs:

r02 = Oxc C4. (23)

The first phase of the privileged instruction, $0 , has now been con-

verted to the first (and only) phase of a NOP. Normally, 00 of NOP is

immediately converted to 05 :

sFl = 00 T8 Ta C2 G5 C8 (C3 + C4) + . .

.

(24)

sF3 = 00 T8 Ta" cT C5 C8 (C3 + C4 ) + . . . (25)

Since this special NOP opcode was never in C, the above transition does

not occur, and the phase counter must be forced to 05:

sFl = ... + pjq + T8 (Ob + Ai) + ... (26)

sF3 = ... + Pig + T8 (Ob + Ai) + ... . (27)

During execution of an instruction which does not reference memory, P

is normally incremented by one (P + 1) during the first phase to obtain

NI. In this case NI will be a trap instruction, so Piq inhibits sla which

in turn prevents P + 1:

sla = ... + 100 Ta T8 C2 C5~ C8 (C3 + C4)J (Kr) Pi Ob Ai Piq + . ..

(28)

P + 1 is inhibited so that the address of the privileged instruction
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will be in P when the trap occurs.

The only other significant task of NOP is to transfer the address

of NI from P to S and initiate a memory read operation. This transfer

must be inhibited by Pi:

Sxp = T3 Irvt (End Pi Ob + Ju Eax) Go. (29)

Since S is cleared at T4:

Sc = T4 (End + FT F2 ) Tnr + . . . , ( 30

)

the underlined portion of the following equation sets S equal to 040:

sS9 = Sxc C6

+ Sxp P6

+ Sxn N9

+ Sx48

+ T3 (Pi + Ob) . (31)

Since cell 040 is in protected storage, the computer must be shifted from

user to executive mode at T3 to prevent a user mode memory violation:

rMo = T3 (Pi + Ob) + ... . (32)

Pi is cleared at T2 to remove all indications that a trap has occurred:

rPi = Pi T2 . (33)

At Tp, the BRM in cell 040 is transferred from the memory register to C,

and is executed during the next phase. The BRM stores the contents of

P in the operand, M, and takes the contents of M + 1 as NI

.

Logic. One flip-flop and 17 NAND gates are required to accomplish

this modification.

Memory Protection

Method. Certain portions of memory may be designated as protected

areas by the computer operator. These protected areas may be. manually
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selected by an eight-position, three-level rotary switch. Each switch

position decodes to a different combination of three signals,

(Mpj) - (Mpj) , as shown in Table 3, This flexibility in the size of

protected memory is provided to allow for changes in size of the execu-

tive control system and the hybrid program.

If an instruction attempts to read out of, write into, or execute

a subsequent instruction from protected memory, the computer will revert

to executive mode and trap to location 041.

A memory reference is normally made twice during instruction execu-

tion. The first occurs during 00 when the instruction carries out the

appropriate operation with the operand; the second reference, which

always occurs during an End phase, is made to retrieve Nl. These two

references are the same for a normal branch instruction, since the oper-

and is taken as NI. Some instructions use the operand address for pur-

poses other than memory access, and therefore reference memory only once,

Switch
Position

1

2

3

5

6

7

8

Decoded
Out put

(Mpl)

ffi)

(MP3)

(Mpf)

Mpl) {Hp2

(MplJ lMp2

(Mp2

(jMp2\\ (Mpf)

(Mp2) (Mpf)

ffl) (Mpf) (Mp3)

(Mpl) (Mp?) (Mpl)

(Mpl) (Mp?) (MpS)

Protected User Memory
Memory Addresses Av.ail able

None 16K

00-03777 14K

00-07777 12K

00-013777 10K

00-017777 8K

00-023777 6K

00-027777 4K

00-033777 2K

Table 3. Memory Protect Switch Positions
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If S contains an address in protected memory at any time, a protect

memory enable, Pme, is generated:

Pme = (MpV) SI

+ (Mpl)(Mp?) S2

+ (tfp2) ST S2

+ (Mp?)W?) (Mp3) S2 S3

+ (Mpl)(^p2^(Mp3^ S2 S3

+ lMp2)(Mp3) si S2 S3

+ (Mp2)(Mp3) sT S2 S3 . (34)

Since S is always cleared at T4 and set to the appropriate memory

address at T3, an illegal address detected at T2 will be used to set the

out-of-bounds flip-flop, Ob:

sOb = Pme Mo End T2 Int + Pme Mo 00 T2 RCH NOP EAX (BRX Xwl

)

, (35)

where the capitalized terms are enables for the indicated instructions:

RCH = 01 02 03 04 (36)

NOP = 01 02 03 (37)

EAX = 01 02 03 04 05 06 (38)

BRX = Ju 01 05" (39)

The Register Change instruction, RCH, and NOP are the only two non-

privileged instructions which do not use the operand address for a mem-

ory reference. The Copy Effective Address into Index Register instruc-

tion, EAX, reads the contents of M, but never uses it. The Increment

Index and Branch instruction, BRX, only branches if bit nine of X con-

tains a one. If this bit, which is in Xwl at T2, is a zero, the branch

is inhibited. In this case BRX Xwl would prevent Ob from being set,
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since no reference is made to the protected location.

If Ob is set at End T2 , transfer of NI from C to is inhibited by

Ob, as indicated in Eq . 20, and is set to 020 by Oc

:

Oc = • •
• + Tp (Ob + Ai) . (40)

If Ob is set at O'O T2 , the present instruction is aborted by Oc

(Eq. 40) and a NOP occurs during the. following phase, If indexing is

used in the aborted instruction, the illegal address determination is

made using the effective address after indexing, since the address por-

tion of X is added to the address portion of C during O'O T7-T3.

If the aborted instruction is one which normally writes information

into memory, the operand is protected by Ob, which inhibits the transfer

from C to M:

Mxc = 0b_ [ism (04 + Eax + Ju 01 05) + Tsm R9 + (Kmc) (41)

Mxc is also an enable for a memory write operation. Its absence converts

the memory reference from a clear-write cycle to a read-restore cycle.

The operand is therefore read from memory into M and restored to memory

without modification.

The operation of the memory protection NOP is similar to that of the

privileged instruction NOP in that Ob (1) advances the phase counter to

phase five (Eq. 26 and 27), (2) inhibits the address transfer from p to

S (Eq. 29), (3) reverts to executive mode (Eq . 32), and (4) sets S to

the trap address, 041, by Eq. 31 and:

sS14 = ... + T3 Ob . (42)

Changes to the memory protection trap operation must be made for

the BRM instruction. Since BRM stores the contents of P in the operand,

it exchanges the contents of P and C10-C23 during the first phase. If Ob
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is set at 00 T2, this indicates that the initial contents of P are about

to be stored in an illegal address. If the BRM is aborted as described

above, the P will contain the operand address of the offending instruction

rather than its location. This situation is corrected by the following

logic changes.

At the same time that Oc sets 02, a signal is generated to set 06:

s06 = Oxc C8 + Oc Ob Ju 01 05 , (43)

which causes the address portion of C to be transferred back to P. C

and P are not exchanged at this point, since the operand address is not

only no longer needed, but it may have been changed if indexing was

used. Since P is shifted during the NOP by Pr3, the transfer is effected

by shifting C:

Cr3 = ... + 05 Ob 06 Ts Ql + ...
, (44)

and enabling the transfer from the full adder to P:

sPO = Pr3 [Addl (... + Ob 06 ) + . . .] , (45)

rPO = Pr3 [Addl (... + Ob 06 ) + . . .] . (46)

Similar terms are used in the equations for PI and P2.

When executive control system executes the EOM to cause the transi-

tion to user mode, Mo is set at TO of the EOM. The retrieval of NI

(the branch to the user area) does not cause a memory protect violation

since sMo comes two timing pulses too late to cause Ob to be set (Eq. 35).

However, the branch instruction must have a non-protected (user area)

address to prevent a violation from occurring during its execution.

Logic. One flip-flop and 17 NAND gates are required to accomplish

this modification.

Quantum Timer

Method. The user time quantum is measured by the second real-time
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clock, which will be programmed as a subjective clock, or interval timer.

This clock, known as the quantum timer, is triggered by an SDS T Series

Medium Frequency Clock Oscillator, Model CT16. The output from the

CT16, Qtc, is a four volt peak-to-peak, 8 kHz sauare wave. The quantum

timer control circuit consists of four flip-flops, Qtl-Qt4, which convert

Qtc to interrupt signals. Its operation is similar to that of the real-

time clock control circuit, except that Qtl and Qt2 are wired as toggle

flip-flops in series to step down the frequency. The output of Qt2 is

a 2 kHz square wave. Qt3 and Qt4 operate as follows:

sQt3 = Qt3 Qt2 Ti (47)

rQt3 = Qt3 Qt4 Ti + (St) (48)

sQt4 = Qt3 Qt4 Qt2 Ti (49)

rQt4 = Qt 4 Ti + (St) (50)

Qt4, a 1.75 usee pulse which occurs every 500 usee, is the request to

the lowest priority external interrupt when in user mode:

(l2%) = Mo Qt4 . (51)

The use of Mo here effectively ignores the quantum timer in executive

mode.

Interrupt level 24 is wired as a single- instruct ion interrupt. The

memory cell associated w"ith this level, 0213, will contain an SKR in-

struction whose operand is a measure of the user time quantum. This oper-

and is decremented every 50 usee while in user mode. When it becomes

negative, it enables Sku:

Sku = Sk 07 Ij Inr Ip24 , (52)

which is the interrupt request to level 23. Since Ski would also be

enabled at this time (Eq . 14), it must be modified to prevent the
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expiration of the time quantum from triggering the CLOCK SYNC interrupt:

Ski = Sk 07 Ij Irvr Ip8. (5 3)

If an interrupt occurs when the computer is in user mode, an auto-

matic transition to monitor mode is made:

rMo = ... + Tr Mo Int . (54)

However, if the interrupt is of the single-instruction type, the computer

must automatically return to user mode since a memory protect violation

would otherwise occur when NI is referenced after the interrupt instruc-

tion. Retrieval of the interrupt instruction itself will not cause a

memory protect violation since Int inhibits the setting of Ob at End T2

(Eq. 35). This automatic return is accomplished by the following pro-

cedure. The occurrence of a single-instruction interrupt in user mode

sets Usi:

sUsi = Mo Int Ij Tr (55)

at the same time that Mo is reset. If Usi is set, the interrupt termi-

nation signal causes a shift back to user mode:

sMo = ... + Usi lb , and (5 6)

resets Usi:

rUsi = Usi lb . (57)

Interrupt level 23 is the normal interrupt which signals completion

of the time quantum. This interrupt operates like other normal inter-

rupts. It can only occur in user mode, since it is triggered by a signal

which is initially recognized by Mo. The interrupt subroutine for level

23, which will normally be used to swap users in and out of core, must

contain and EOM instruction to shift back to user mode, if such a shift

is desired.
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Logic . One oscillator module, five flip-flops, and 11 NAND gates

are required to accomplish this modification.

Non-interruptible Sequences

Method . Sequences of multilevel indirect addressing or Execute

instructions, EXU, are normally not interrupt ible. The design changes

described in the following paragraphs allow these sequences to be inter-

rupted while in user mode. If an interrupt is received, the offending

instruction is aborted, and an interrupt ible NOP is executed in its place

Upon completion of the interrupt subroutine, the aborted instruction is

executed again from the beginning.

If an EXU or an indirect addressing instruction is being executed

when an interrupt signal is received, the allow interrupt flip-flop, Ai,

is set:

sAi = [lr(En + (jiti) ) + Is] 00 TO Int" Mo

(la RCH NOP + OY 02 03 04 05 06) . (58)

Ai resets the indirect address flip-flop on the following timing pulse:

rla = ... + Ai Tr . (59)

The NOP is forced at Tp (Eq. 40) and unwanted microoperat ions which may

have been initiated by the setting of Ju and Eax from C are inhibited:

sJu = (00 T8 la" Go C2 + 00 T8 Ta Go C4 C5 C8 C9

+ 00 T8 C9" 02 03) Ob Pi Ai Pig . (60)

sEax = (00 T8 Ta Go) C2 + (00 T8 Ta Go) C3 C4 C5 C6 C7 C8 C9

+ (00 T8 C9~) 01 02 03 04 05 06 Ob Pi aT Pig" . (61)

Oxc and sla are inhibited by the same logic used for a trap forced NOP

(Eq. 20 and 28); inhibiting the latter causes the aborted instruction to

60



be repeated after the interrupt is cleared because it prevents the P + 1

increment. The phase counter is also advanced to 05 (Eq. 2 6 and 27).

The only function performed by the NOP is to get interrupted. Re-

trieval of the interrupt instruction does not cause a memory protect

violation because Int inhibits sOb (Eq. 35). Ai is reset at T3 and the

computer is shifted back to executive mode at Tr of the NOP (Eq. 54).

If the interrupt was not single-instruction, the interrupt subrou-

tine must contain an instruction to shift back to user mode. The deter-

mination of which mode was interrupted can be made by examining the

operand address of the first instruction in the subroutine. If that

address is not in protected storage, then the computer must have been

in user mode.

Logic. One flip-flop and seven NAND gates are required to accomplish

this modification. £10, HJ
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V. SOFTWARE EQUIVALENTS

The following comparative analysis between the foregoing proposed

modifications and the accomplishment of the same objectives with soft-

ware is presented to demonstrate the desirability of these hardware

modif icat ions

.

Multiple Operating Modes

The absence of hardware changes precludes the use of the two-mode

concept. The user mode is implemented solely to allow the other modifi-

cations to apply only to the display console users and the batch proces-

sing jobs. There is no software equivalent to the user mode hardware.

Privileged Instructions

Detection and prevention of the execution of privileged instructions

can be feasibly implemented only by allowing the user to program through

a compiler. If the user is restricted to a conversational subset of

FORTRAN, for example, the privileged instruction protection will auto-

matically exist, since all such instructions will be excluded from the

allowable object code. In addition, since each legal FORTRAN statement

generates a legal, executable set of machine instructions which is free

of errors, the object code will not contain inadvertent jumps into data

areas with the usual disastrous results.

If the console user is allowed to use an assembly language, the

assembler can restrict his use of machine instructions to any desirable

subset. It cannot, however, prevent his executing a jump to an address

which does not contain an assembled instruction. If this should happen,

not only will the user's program, be destroyed, but a privileged instruc-

tion execution is almost certain to result.
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Memory Protection

Memory protection can be provided for user programs only by restricting

his operations to compilers. If an assembler is used, it could prevent

the assembly of instructions into protected memory, but it could not de-

tect operand addresses which would cause violations. Even if all abso-

lute operand addresses were screened, the effective address resulting

from indexing or indirect addressing could be quite different. In addi-

tion, operand addresses themselves can be modified during program execu-

tion. In view of the foregoing, it is virtually impossible for an

assembler to detect beforehand when a memory violation will occur.

Quantum Timer

The quantum timer could be implemented with an elaborate real-time

clock subroutine, but the highest frequency clock pulses used anywhere

in the system would be required to initiate the subroutine. Since this

subroutine would have to fulfill all the timing needs of the entire sys-

tem, it would have a significantly long decision time. This high

interrupt frequency and long decision time in combination would result

in excessive overhead.

Non- interrupt ible Sequences

No n- interrupt ible sequence prevention by software is subject to

restrictions similar to those noted for the above modifications. Again,

a compiler can control the situation whereas an assembler cannot. It

is also impossible to detect this condition in a program prior to execu-

tion. The only significant difference in this case is that such sequences

are not nearly as likely to occur as privileged instructions and memory

violations.
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SECTION V

CONCLUSION

Interrupts have been shown to be indispensable in time-sharing

computer systems. The majority of jobs performed in a time-sharing

environment require a high degree of interaction with the outside world,

In addition, the housekeeping involved with program switching and detec-

tion of illegal operations can both benefit from efficient interrupt

systems. The demands for fast response time and low overhead dictate

that time-sharing interrupt systems be as efficient as possible.

The requirements for efficiency in the proposed DCL time-sharing

scheme will be much less severe than in other systems because of the

small number of users. While similar operations could be performed

subject to the restrictions noted in the previous section, the imple-

mentation of the proposed modifications would permit not only higher

efficiency, but a vehicle for the study and development of improved

time-sharing software and hardware concepts.
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APPENDIX I

SDS 930 OPERATION CODES

Mnemonic Instruction Code

ABC 46 00005

ADC 57

ADD 55

ADM 63

AIR 02 20020

ALCO 02 50000

ASC 02 12000

BAC 46 00012

BETW 40 20010

BETY 40 20020

BPT1 40 20400

BPT2 40 20200

BPT3 40 20100

BPT4 40 20040

BRM 43

BRR 51

BRTW 40 21000

BRTY 40 22000

BRU 01

BRX 41

BTT 0, n 40 1201n

CAB 46 00004

CATO 40 14000

CAX 46 00400

CBA 46 00010

CBX 46 00020

CETO 40 11000

CFTO, 1 40 11006

CITO 40 10400

CLA 46 00001

CLB 46 00002

CLR 46 00003

CLX 2 46 00000

CNA 46 01000

CPT 0,

1

40 14046

CRT 0,1 40 12006

Nc

COPY A INTO B, CLEAR A

ADD WITH CARRY

ADD M TO A

ADD A TO M

ARM INTERRUPTS

ALERT CHANNEL W
ALERT TO STORE ADDRESS IN

CHANNEL W

COPY B INTO A, CLEAR B

W BUFFER ERROR TEST

Y BUFFER ERROR TEST

BREAKPOINT NO. 1 TEST

BREAKPOINT NO. 2 TEST

BREAKPOINT NO. 3 TEST

BREAKPOINT NO. 4 TEST

MARK PLACE AND BRANCH

RETURN BRANCH

W BUFFER READY TEST

Y BUFFER READY TEST

BRANCH UNCONDITIONALLY

INCREMENT INDEX AND BRANCH

BEGINNING OF TAPE TEST

COPY A INTO B

CHANNEL W ACTIVE TEST; SKIP IF

CHANNEL INACTIVE

COPY A INTO INDEX

COPY 8 INTO A

COPY B INTO INDEX

CHANNEL W ERROR TEST; SKIP IF

NO ERROR

CARD READER END-OF-FILE TEST

CHANNEL W INTER-RECORD TEST

CLEAR A

CLEAR B

CLEAR AB

CLEAR INDEX REGISTER X

COPY NEGATIVE INTO A

CARD PUNCH READY TEST

CARD READER READY TEST
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NAnemcn Instruction Code

CXA 46 00200

CXB 46 00040

CZT 40 12000

D a 02 20004

ulv 65

DSC 02 00000

DT2 0,n 40 1621n

DI5 0,.i 40 166 In

Dl , 0, i 40 1721n

EAX 77

EFT n,4 02 036 7n

E1R 02 20002

EOD 06

EO/ 02

EOR 17

EPT 0,1 40 14060

ERT 0,n,4 02 0767n

ETR 14

ETT 0,n 40 HOln

EXU 23

FCT C, l 40 14006

FPT n 40 1401n

HLT 00

IDT 40 20002

1ET 40 20004

IORD

lORP

10<D

10SP

LCY C 67 20XXX

LDA 76

LDB 75

LDE -16 00140

LDX 71

LRSH 66 24XXX

LSH 67 00XXX

M1N 61

MIW 12

MIY 10

. MRG 16

Nome

COPY INDEX ll.rO A

COPY INDEX INiO B

CHANNEL W ZERO COUNT TEST;

SKIP IF COUNT EQUALS ZERO

DISABLE 1NTERMJ! SYSTEM

DIVIDE

DISCONNECT OiANNEL W

DENSITY TEST, mQ BPI

DENSITY TEST, 556 BPI

DENSITY TEST, 800 BPI

COPY EFFECTIVE ADDRESS INTO
INDEX REGISTER

ERASE TAPE FORWARD

ENABLE INTERRUPT SYSTEM

ENERGIZE OUTPUT TO DIRECT ACCESS
CHANNEL

ENERGIZE OUTPUT M

EXCLUSIVE OR

END OF PAGE TEST

ERASE TAPE IN REVERSE

EXTRACT

END OF TAPE TEST

EXECUTE

FIRST COLUMN TEST

FILE PROTECT I EST

HALT

INTERRUPT D!SA3LhD TEST

INTERRUPT ENABLED TEST

I/O OF A RECORD AND DISCONNECT

I/O OF A RECORD AND PROCEED

I/O UNTIL SIGNAL THEN DISCONNECT

I/O UNTIL SIGNAL THEN PROCEED

I EFT CYCLE AB

LOAD A

LOAD B

LOAD EXPONENT

LOAD INDEX

LOGICAL RIGHT SHIFT AB

LEFT SHIFT AB

MEMORY INCREMl.vIT

M INTO W BUFFER WHEN EMPTY

M INTO Y BUFFER V/HEN EMPTY

MERGE
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Mnemonic Instruction Code

MUL 64

NOD 67 10XXX

NOP 20

OVT 40 20001

PBT 0, 1 20 12046

PCB 0,1,4 02 03646

PCD 0,1,4 02 02646

PFT 0, 1 40 11060

PIN 33

PLP 0,1,4 02 02660

POL 0,

1

02 10260

POT 13

PPT 0,1,4 02 02644

PRT 0, 1 40 12060

PSC 0,1, N 02 1N460

PSP0, 1,N 02 1N660

PTL 0,1,4 02 00644

RCB 0,1,4 02 03606

RCD 0,1,4 02 02606

RCY 66 20XXX

REO 02 20010

REW 0,n 02 1401n

RKB 0,1,4 02 02601

ROV 02 20001

RPT 0,1,4 02 02604

RSH 66 00XXX

RTB 0, n, 4 02 0361n

RTD0,n,4 02 026 In

RTS 02 14000

SFB 0,n,4 02 0363n

SFD0,n,4 02 0263n

SKA 72

Nome

MULTIPLY

NORMALIZE AND DECREMENT INDEX

NO OPERATION

OVERFLOW INDICATOR TEST AND RESET

PUNCH BUFFER TEST

PUNCH CARD BINARY

PUNCH CARD DECIMAL (HOLLERITH)

PRINTER FAULT TEST

PARALLEL INPUT

PRINT LINE PRINTER

PRINTER OFF LINE

PARALLEL OUTPUT

PUNCH PAPER TAPE WITH NO LEADER

PRINTER READY TEST

PRINTER SKIP TO CHANNEL N

PRINTER SPACE N LINES

PUNCH PAPER TAPE WITH LEADER

READ CARD BINARY

READ CARD DECIMAL (HOLLERITH)

RIGHT CYCLE AB

RECORD EXPONENT OVERFLOW

REWIND

READ KEYBOARD

RESET OVERFLOW

READ PAPER TAPE

RIGHT SHIFT AB

READ TAPE IN BINARY

READ TAPE IN DECIMAL (BCD)

CONVERT READ TO SCAN

SCAN FORWARD IN BINARY

SCAN FORWARD IN DECIMAL (BCD)

SKIP IF M AND A DO NOT COMPARE
ONES

SKB 52 SKIP IF M AND B DO NOT COMPARE
ONES

SKD 74 DIFFERENCE EXPONENTS AND SKIP

SKE 50 SKIP IF A EQUALS M

SKG 73 SKIP IF A GREATER THAN M

SKM 70 SKIP IF A=M ON B MASK

SKN 53 SKIP IF M NEGATIVE

SKR 60 REDUCE M, SKIP IF NEGATIVE

68



Mnemonic Instruction Code

SKS 40

SRB 0, n, 4 02 0763n

SRC 0, 1 02 12006

SRD 0, n, 4 02 0663n

SRRO 02 13610

STA 35

STB 36

STB 46 00122

STX 37

SUB 54

sue 56

TFT 40 13610

TGT 0, n 40 126ln

TOPO 02 14000

TRT0,n 40 1041n

TYPO, 1,4 02 02641

WIM 32

WTB 0,n,4 02 0365n

WTD 0,n,4 02 0265n

XAB 46 00014

XEE 46 00160

XMA 62

XXA 46 00600

XXB 46 00060

YIM 30

Nome

SKIP IF SIGNAL NOT SET

SCAN REVERSE IN BINARY

SKIP REMAINDER OF CARD

SCAN REVERSE IN DECIMAL (BCD)

SKIP REMAINDER OF RECORD

STORE A

STORE B

STORE EXPONENT

STORE INDEX

SUBTRACT

SUBTRACT WITH CARRY

TAPE END-OF-FILE TEST

TAPE GAP TEST, CHANNEL W
TERMINATE OUTPUT OF CHANNEL W
TAPE READY TEST

WRITE TYPEWRITER

W BUFFER INTO M WHEN FULL

WRITE TAPE IN 8INARY

WRITE TAPE IN DECIMAL (BCD)

EXCHANGE A AND B

EXCHANGE EXPONENTS

EXCHANGE M AND A

EXCHANGE INDEX AND A

EXCHANGE INDEX AND B

Y BUFFER INTO M WHEN FULL
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APPENDIX II

SDS 930 LOGIC TERMINOLOGY

The SDS 930 computer logic was designed to fulfill two major

objectives: economy and reliability, Economical design was achieved

by using a large variety of logic modules, each tailored more or less

to a particular need. Reliability was achieved by using carefully

selected components, including all silicon transistors.

This appendix will describe the characteristics of the SDS 930

computer logic circuits, logic equations and timing diagrams.

I. LOGIC CIRCUITRY

Logic Levels

Logic signals are represented in the SDS 930 by DC logic levels

as follows:

volts = = False

+4 volts = 1 = True

Most of the SDS 930 series peripheral equipment uses +8 volts for the

True signal, but the necessary conversions are made when this equipment

communicates with the computer.

Logic Gate Circuitry

AND gate . The AND gate must have true signals on all inputs in order

for the output to be true. The standard symbol and the circuit used to

implement the AND gate are shown in Figure 3. If any one of the diodes

has a false signal applied to its cathode, that diode will conduct cur-

rent from the load resistor, R, and cause the output to drop to volts.

If all diodes have true inputs, the IR drop through R will be 21 volts.

The output will then be +4 volts, or true.
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A O-

B O-

C O-
ABC

(a) Symbol

+25 v

AO H4

CO *

B O R

(b) Circuit

Figure 3. AND Gate.
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(a) Symbol

AO-
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(b) Circuit

B O-

C O-

D O-

E O-

F O-

Figure 4. Expander AND Gate.

ABCDEF—

O

(a) Symbol

AO-

B O-

CO-

DO-

E o-

F O-

+ 25 v

O

(b) Circuit

Figure 5. Expanded AND Gate

% R
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Expander AND gate . The expander AND gate is identical to the AND

gate except that it does not have the load resistor, It is used to add

inputs to a standard AND gate, The symbol and circuit are shown in

Figure 4. Figure 5 shows the method of expanding an AND gate. A stand-

ard AND gate may be expanded to a maximum of 30 inputs.

OR gate . The OR gate will have a true output if any one or more

of its inputs are true. This function is illustrated in Figure 6. Each

of the inputs is fed to a single input AND gate, which in turn is con-

nected to an output diode. If one of the inputs is true, the associated

output diode will have +4 volts at its anode. Since the forward resis-

tance of the diode is negligible, the voltage at the bottom of the output

load resistor is +4 volts, and the output is therefore true. All input

connections must be connected to desired signal sources or grounded, If

an input is left open, the output will always be true.

AND/OR gate . When the outputs from two or more AND gates are to be

combined at an OR gate, this can be done most economically by using an

extra input diode to each AND gate as the OR gate output diodes. The

logic symbol and circuitry for this configuration are shown in Figure 7.

Expander AND gates may also be added to the AND portions of the AND/OR

gate.

Inverter. An inverter is used to generate the complement or in-

verse of a signal, and to provide additional driving capability to sig-

nals. The inverter symbol and circuit are shown in Figure 8. The circle

superimposed on any logic symbol always indicates a complement operation.

Since the Zener diode is always back-biased by R^ , the base of the trans-

istor will be 3.3 volts below the input. When the input is volts, the

transistor is cut off, and the output is +4 volts, or true, When the
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A °—14

+ 25 v

+ 25 v

-25 v

Q

A O

b o

c o
A+B+C

BO
fl-

Cc—14

i
+ 25 v

«
(a) Symbol

Figure 6,

(b) Circuit

OR Gate.

AO «-
+ 25 v

A O-

B O-

BO *
? *

-25 v

AB+CD

CO-

D O-

+ 25 v

C O-

DO 14
(a) Symbol (b) Circuit

Figure 7. AND/OR Gate,

+4 v

(a) Symbol

Figure 8. Inverter.
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input is true, the transistor is in full conduction, and the output is

false (about .25 volt).

Buffer amplifier . The buffer amplifier is used to increase the fan-

out capacity of diode logic gates. It consists of two inverters in cas-

cade. In some cases the Zener diode and bias resistor of the second

inverter are omitted. The circuit symbol and both circuit configurations

are shown in Figure 9. The operation of each inverter is the same as

described in the previous paragraph.

Buffered AND gate . The buffered AND gate, or BAND, performs the

same logic function as the AND gate, except that it provides for in-

creased fan-out capability. It is a series combination of an AND gate

and a buffer amplifier. The logic symbol is shown in Figure 10.

Negative AND gate . The negative AND gate, or NAND, produces the

complement of the standard AND gate as an output, since it is a series

combination of the AND gate and the inverter. The output also has in-

creased fan-out capability. The NAND is the standard logic circuit used

in the SDS 930. If there is a choice between a NAND and some other cir-

cuit which will do the same job, the NAND is chosen. The NAND symbol is

illustrated in Figure 11.

Line inverter. A line inverter is used on each end of a coaxial

transmission line when used for transmitting signals. It is similar to

the standard inverter, except, that it performs the additional tasks of

impedance matching, and logic level modification where required. The

inverter at the sending end is called a line driver, and the one at the

receiving end is called a line receiver. The symbols for these are shown

in Figure 12.
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+16 v +4 v

(a) Symbol

-25 v

(b) First Configuration

+k v

A <

A ©

B O

c o

(c) Second Configuration

Figure 9. Buffer Amplifier

A

B
ABC

(a) Symbol

J
7&c

(b) Equivalent Circuit

Figure 10. Buffered AND.

AO

BO-

C ©

o-

(a) Symbol (b) Equivalent Circuit

ABC

ABC

Figure 11. Negative AND.
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Flip-flop Operation

The flip-flop is the primary logic signal storage device in the

SDS 930. Many configurations are used, but the logical operation of

three basic types will be described here.

The standard flip-flop used in the SDS 930 is the AC flip-flop.

This circuit is a standard transistorized bistable multivibrator, with

the added feature that its operation is controlled by timing pulses. If

a signal is present at the set input and the flip-flop is in the reset

state, or vice versa, it will switch to the opposite state in coincidence

with the trailing edge of the next timing pulse. This provision makes

it possible for a flip-flop to have separate, independent, input and out-

put signals at the same time with no possibility of confusion between the

two. This flip-flop usually contains a DC input to either the set or re-

set states. Grounding of this DC input will cause the flip-flop to switch

to the indicated state immediately without regard to timing pulses.

The NAND flip-flop is similar to the one previously described, with

the exception that the set and reset inputs are fed through NAND gates.

The circuit symbol of the AC and NAND flip-flops are shown in Figure 13.

The DC flip-flop is a standard bistable multivibrator without AC

clocking. The set input is normally a series of three AND gates, with

two inputs each, combined in an OR gate. DC flip-flops are used as the

stages of the memory register to provide the shortest possible memory

cycle time. Its circuit symbol is the same as that of the AC flip-flop. [l2j

II. LOGIC DOCUMENTATION

The construction and operation of the computer are fully described

by (1) the logic equations, (2) the logic diagrams, (3) the timing

diagrams, and (4) the module reference data. Each will be described briefly,

followed by an example function illustrating the use of these documents.
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/A/ /A/

(a) L ine Driver (b) Line Receiver

Figure 12. Line Inverters.

AXX

AXX

(a) AC Flip-flop (b) NAND Flip-flop

Figure 13. Flip-flops
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Logic Equation

Logic equations are used to define the origin of each signal gen-

erated within the computer. The left-hand side of the equation is a

single term which names the signal generated by the combination of terms

on the right-hand side. Some signals involving registers have names

which are descriptive of the function of the signal. These are illus-

trated in Table 4 using a fictitious D register.

Term Meaning

SD12 Sets flip-flop D12 , the 12th stage of the D register

rDl2 Resets flip-flop D12

Dc Clears (resets) the D register

Dk Complements the D register

Dxe Enables the transfer of the contents of the E
register to the D register

Dr3 Shifts the D register right 3 bits

Di2 Shifts the D register left two bits

Table 4. Special Logic Equation Terms

The right-hand side of a logic equation represents the logical com-

bination of signals which produces the generated signal, The AND function

is represented by the multiplication of terms, the OR function is repre-

sented by the addition of terms, and the NOT function is represented by

a bar over the applicable terms.

Logic Diagram.

The CPU consists of circuits mounted on logic modules. There are

five rows of 64 modules each. The rows are lettered B, C, D, E, and F.

A logic element numbered 32C is on the 32nd module of the C, or second,

row.
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The logic diagrams show the circuitry, in logic symbol form, which

is used to implement each logic equation. These diagrams also show the

location of each circuit in the computer for maintenance purposes. A

portion of a typical logic diagram is shown in Figure 14. This circuit

consists of one NAND gate into the set and one into the reset sides of

the NAND flip-flop Mgz.

The numbers adjacent to the small circles in Figure 14 indicate pin

numbers on the logic modules. The set output of Mgz has a separate load

resistor, which is mounted on logic module 44E and connected to pin num-

ber 40 of that module. The flip-flop is located on module number 40C,

and the NAND gates on 54C.

The logic equations for Mgz are

sMgz = Zrq T3 St"

rMgz = T4 .

The correlation between the equations and the circuit is readily apparent.

Timing Diagram

The timing diagrams indicate the sequence of operations initiated

by each computer instruction. A sample timing diagram is shown in Figure

15. The space between two horizontal lines represents one timing pulse.

Each signal initiated by a timing pulse is shown to the right of a ver-

tical line in the space for that pulse. The timing pulse for each space

and the particular phase in which it occurs are labeled at the left-hand

edge of the diagram. If the signal is present for more than one timing

pulse, this is indicated by a vertical line through all of the applicable

timing pulse spaces.

For example, in Figure 15, the signal sEax is true during timing

pulse T8 of phase zero only. The signals C—*-Add , Cr3, and Add-^-C

are all true during timing pulses T7 through TO of phase zero.
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Mgz
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Figure 14. Typical Logic Diagram
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8 1 iEax 11 six 1 Oxe

7

6

5

4 1 ^r
f
rMjjt

3 IrEflx Add-—

X

Sxc, sMgs

2

1
g-*»Add -

Cr3 Add—-C X—Add

Tr 1 rlx

TP sFI.sF2 £xjti

0

8 1 S |a

7

A

5

4 | Sc, rMqs

3 Pr3 Sxd.sMos

*6

jln.

IB. Cxrn Qs.rFl.rF2

Figure 15. Timing Diagram, EAX Instruction
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The double vertical line indicates a conditional action. In Figure

15, if Ix is set at T8, then X—>-Add is true from T6 through TO. If Ix

is not set, then X->-Add will remain false.

Module Reference Data

The module reference data publication contains a complete circuit

diagram for each different type of logic module used in the SDS 930

computer, [I
3

J

Example

The use of the Ju flip-flop in a Branch Unconditional instruction,

BRU, will be traced to illustrate the method of using the previously

described documents. The BRU causes the next instruction to be taken

from the memory location indicated by the operand address.

The timing diagram for the BRU is shown in Figure 16. It shows that

the Ju flip-flop is set at T8 of 00. This is verified by the logic equa-

tion for setting Ju:

sJu = (00 T8 La Go) C2

+ (00 T8 la" Go) C4 C5 C8 C9

+ (00 T8 C9) 02 0~3 .

The second term of the equation is applicable in this case. It indicates

that if indirect addressing is not being used (la and C9) , AND the com-

puter is operating (Go), AND the proper opcode is present (C4 C5 C8)

,

then Ju is set at T8 of 00.

The implementation of the sJu logic equation into circuitry is shown

in Figure 17. The output of the NAND gate at pin 28 of module 47B is

(00 T8 la Go) C2. The direct combination of this NAND gate and the other

two NAND gates with load resistor at pin 51 of module C9 constitutes an

AND function. The input to the NAND gate at pin 6 of module 46B is



Tp

8 | iJu || six Oxc

7

6

5 ,

4 Add—

P

Sc# rMgs

3 Pr3 Sxp, sMgs

2

1 C—-Add
Cr3 X—Add

Tr |rlx

Jl rju, Oc Cxm

Figure 16. Timing Diagram, BRU Instruction.

((poT^Go)*2^-

((JJoTskGo)

5IC9hWv—

6

X-+*.

Figure 17. Ju Flip-flop Logic Circuit,
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therefore:

(00 T8 la Go C2) (00 T8 la Go C4 C5 C8 C9) (00 T8 C9 02 3) .

By DeMorgan's theorem, this is equivalent to:

(00 T8 la Go C2) + (00 T8 7a~ Go C4 G5 C8 C9) + (00 T8 C9 02 03) .

The output of the NAND gate, which is the inverse of the above function,

is the necessary signal to set flip-flop Ju and is the input to pin 37

of module 33B.

The actual circuit used can be determined as follows. The Ju flip-

flop is located on the module at location 33B. The diagram on page 5

of the logic diagram publication shows that this location contains an

FB52 logic module. The complete circuit diagram for this module is

shown in the module reference data publication.
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APPENDIX III

SUMMARY OF PROPOSED LOGIC MODIFICATIONS

J[lr(En + (En)) + Is] 00 TO Tnt Mo

[la (01 02 03 04) (01 02 03) + 0T 02 03 04 05 06]V

rAi = T3

Cr3 =

sEax = (00 T8 la Go C2 + 00 T8 la Go C3 C4 C5 C6 C7 C8 C9

+ 00 T8 C9* 02° 0~3) Ob pT Ar Piq

sFl = Ob Tp (Eax + Sk + 0k)

+ Ob 00 Tp la (03 04 + 01 04)

+ Ob Tp FT F3 OT 3 04 Ya Rf

+ 00 T8 la C2 C5 C8 (C3 + C4)

+ T8 (Ob + Ai)

+ Piq

+ T8 Go

rFl = Tp (End Sk + Ob)
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sF2

sF3 =

Ob Tp (Eax + Sk + 04)

+ Ob 00 Tp Ta~ 01 02"

+ Ob 00 Tp la 3 (01 +02)

+ Ob0fOTpTaO3O4Rf

+ 01 Tp

+ 01 05 02

+ Ob 00 Tp la 04 05 bT

Ob Tp (Eax + Sk + 04)

+ 00 T8 la* C2 C5~ C8 (C3 + C4)

+ T8 Go

+ Ob 00 Tp la 03 04

+ 00 Ta 04 0~3 04 05

+ T8(Ob + Ai)

+ Piq

124; = Mo Qt4

sla = 00 T8 C2 C9 [00 Ta T8 C2 C5 C8 (C3 + C4)|

+ [00 Ta T8 C2* C5 C8" (C3 + C4)] (|r) Pi Ai Ob piq

+ T8 07 Sk (Kr) (Tj + Inr)

+ T8 Fl F3 (Kr) (Tj + Inr)

+ T8 (Kmc)

rla = (P12 P13 P14) Q2 Fl

+ Tr Fl (Ob Pi Al Piq)

+ 00 T8 C9" la

+ Ai Tr
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slnt = (05 01 05 Ts Ql) T4 End Is + Ir (En + En ) Ts Ob Pi

sJu = (00 T8 la" Go C2 + 00 T8 T^ Go C4 C5 C8 G9

+ 00 T8 C9 02 03) Ob Pi Ai Piq

sMo = Eom C10 ClT C18 TO

+ Usi lb

rMo = T3 (Pi + Ob)

+ Tr Mo Int

Mxc = Ob [Tsui (04 + Eax + Ju 01 05) + Tsm R9 + (kmc

s06 = Oxc C8 + Oc Ob Ju 01 05

r06 = Oc Ob

sOb = Pme Mo End T2 InT

+ Pme Mo 00 T2 1(01 02 03 04) (01 02 03) (01 02 03 04 05 06)

(Ju 01 05 X^T)J

rOb = T3

Oc = Tp End Sk + Tp 01 03 la Go + Tp (Ob + Ai)

Oxc = 00 T8 la Go G2 Piq Ob Ai

sPO = : < Addl (Ju Eax + 02 04 05 06 + Ob 06) + C6 [Eax (T7 + T6)1V
+ P12 (P13 P14 la) Fl (Go + (Kmc)) (02 04 05 06)

+ P12 (P13 PL4 la) Fl (Go + (Kmc)) (02 04(Kmc) ) (02 04 05 06) k

rPO = Pr3
{ }
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sPl

rPl

sP2 =

Pr3<JAdd2 (Ju Eax + 02 04 05 06 + Ob 06) + C7 [~Eax (T7 + T6)]

+ P13 (P14 la) Fl (Go + (Kmc) ) (bT 04 05 06)

+ PI 3 (P14 la) Fl (Go + (Kmc) ) (02 04 05 06) I

Pr3

{ 2
Pr3 <j Add3 (Ju Eax + 02 04 05 06 + Ob 06)

+ C8 [Eax (T7 + T6)J

+ P14 la Fl (Go + (Kmc) ) (07 04 05" 06)

}

rP2 = Pr3
{

+ P14 la Fl (Go + (Kmc)) (02 04 05 06)

+ Eax T5

}

sPi = Piq

rPi = Pi T2

Pid = C3 C5 C6

C3 C5 C6

C4 C5 C6 C8

C3 C4 C5 C7

C4 C5* c7 C8

C4 C5" C6 C8

C3 C4 C5 C7 C8

C3 C4 C5 C7 C8

C3 C4 C5 C7 C8

C3 C4 C5 C7 C8

Piq = Pid Mo Go C2 00 T8 la
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Pme = (Mpl) SI

+ (Mpr)(Mp2) S2

+ (Mp2) sT S2

+ (Mpl)(Mp2) (Mp3) S2 S3

+ (Mpl)(^Ip2) (Mp^) S2 S^

+ (Mp2J(Mp3j SI S2 S3

+ (Mp2)(Mp3) Si S2 S3

sQt3 = Qt3 Qt2 Ti

rQt3 = Qt3 Qt4 Ti + (St

sQt4 = Qt3 Qt4 Qt2 Ti

rQt4 = Qt4 Ti + (St)

sS9 = Sxc C6

+ Sxp P6

+ Sxn N9

+ Sx48

+ T3 (Pi + Ob)

sS14 = Sxc Cll

+ Sxp Pll

+ Sxn N14

+ 03 05 "06 Sk S14

+ 03 05 06 Sk C5 (Al A2 + Al A2)

+ T3 Ob

Ski Sk 07 Ij Tnr Ip8
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Sku = Sk 07 Ij Inr Ip24

Sxp = T3 Int (End Pi Ob + Ju Eax) Go

+ T3 (Kmc)

sUsi = Mo Int Ij Tr

rUsi = Usi lb
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